

World at night

Light pollution

Clouds, clouds, clouds

Yuri Beletsky, CEDIC 2017

Backyard telescopes

Image quality (seeing)

What we want

What we usually get

Going remote!

Cloud coverage

Altitude 2.5x2.5 degree average select: [1000,4000]m

AND

PWV 1948-2002 average select < 10 mm H2O

AND

Total Cloud Cover 1979-1993 Select Average < 40%

Weight

Weight

Weight

Remote observatories

However, not all remote observatories are equal

Image quality (seeing)

What we want

What we usually get

Chilescope

remote observatory for astrophotographers

https://www.facebook.com/chilescope www.chilescope.com

Astronomy on demand

The main goal of the "CHILESCOPE" project is to provide astronomical society (both amateur and professional) with affordable access to high quality equipment under dark sky under sub second seeing conditions in the S

Southern sky

Yuri Beletsky, CEDIC 2017

Southern sky

Atacama desert

Cloud cover

Yuri Beletsky, CEDIC 2017

Sky transparency

Atacama

Hong Kong

Sky transparency

Yuri Beletsky, CEDIC 2017

Yuri Beletsky, CEDIC 2017

Site selection - typical landscape

Site selection - looking for a mountain

Site selection - looking for a mountain

Seeing measurement campaign

Seeing measurement campaign

Seeing measurement campaign

Coordinates:

Lat: -30° Lon: 70°

Alt: 1564m

Driving distance from La Serena airport: 2.5 - 3 h

Excellent road (up to valle Hurtado), then unpaved road to the site

Equipment

ASA 2 x

Yuri Beletsky, CEDIC 2017

Solar power

Yuri Beletsky, CEDIC 2017

Yuri Beletsky, CEDIC 2017

Yuri Beletsky, CEDIC 2017

OPTICS

- Optikdesign by Dipl. Phys. Philipp Keller
- Optics by LOMO
- Ritchey Chretien f/8
- Diffraction limited field of view 41 arc minutes (with corrector)
- Image quality 80% < 0,4 arc sec
- Optical quality better than L/24 RMS wave front
- A1+SiO2 coating on all mirrors

OPTICAL TUBE ASSEMBLY:

- Open Truss Tube
- Lasalle main mirror support
- Focus Azimuthal: 2 x Nasmyth Focus
- Motorized main mirror covering (computer-controlled)
- Motorized secondary mirror focuser (computer-controlled)

MOUNT ALT-AZIMUTHAL:

- Forkmount
- Direct Drive Torque motors with 400NM Torque
- Slew rate more as 10 degree per second
- Renishaw ResoluteTM Encoders with absolute Position Readout, no homefind necessary
- Software: Autoslew
- Pointing: < 5" RMS at >20° altitude
- Tracking performance without guiding < 0,4" RMS/300 seconds

- FLI Proline 16803
- FLI CenterLine CL-1-10
- ASA focuser
- F/6.8 effective
- FOV 18.2' x 18.2'
- Filters:
 - ASTRODON
 - SII
 - OIII
 - H_alpha

- f/16 with 2X Powermate
- FOV 2.4' x 1.5'
- ZWO ASI174MM 1/1.2" CMOS, USB3.0, 2.3Mega Pixels, 1936×1216, pixel size: 5.86µm
- FLI CFW-1-8
- Filters:
 - ASTRONOMIK PLANET IR PRO 742
 - BAADER IR-PASS 670NM FILTER 1.25"
 - ASTRODON
 - BAADER 1.25" IR PASS FILTER
 - BAADER 1.25" U-FILTER

- ASA DDM85
- FLI Proline 16803
- FLI CenterLine CL-1-10
- ASA focuser
- Filters:
 - ASTRODON
 - SII
 - OIII
 - H_alpha

- ASA DDM85
- FLI Proline 16803
- FLI CenterLine CL-1-10
- ASA focuser
- Filters:
 - ASTRODON
 - SII
 - OIII
 - H_alpha

Telescope control system

Yuri Beletsky, CEDIC 2017

Yuri Beletsky, CEDIC 2017

Yuri Beletsky, CEDIC 2017

First science

The web-site

The web-site

The web-site

Remote session

Thank you!

Yuri Beletsky, CEDIC 2017