Struggling with the SNR

A walkthrough of techniques to reduce the noise from your captured data.

Evangelos Souglakos celestialpixels.com Linz, CEDIC 2017

Astrophotography of faint deep-sky objects is all about signals and noise

- The more signal you collect the better your photos will be.
- Top priority is always to collect as many data as possible.

Types of noise

Read noise (On Chip) / Camera Noise (Off Chip)

• Comes from both the electronics on the sensor itself and from the electronics inside your camera.

Dark Current Noise

- Intensity should double as you double the exposure duration and it should also double for every 6°C
- Pattern of fixed, spatial noise
- Reduced by cooling

• Electronic Interference / Bias

- CCD, CCD preamplifier, ADC, CDS signal processor
- Pixel Non-Uniformity
 - Each pixel has a slightly different sensitivity to light, typically within 1% to 2% of the average signal. Can be
 reduced by calibrating an image with a flat-field image

Shot noise or Photon Noise (target and skyglow)

- Random arrival of photons hitting a pixel of your sensor per time
- Sensor doesn't know if the photons are coming from your target or from the skyglow
- Skyglow lowers SNR by injecting shot noise into the image without also injecting signal into the image.

Hot and Cold Pixels

• Defective pixels. No signal is acquired anymore by those pixels

Cosmic Rays

- High energy particles strike Earth's atmosphere and release a rain of charged particles and photons which are detected as bright specks in an image.
- Other Artifacts such as Satellites, Airplanes, Meteors etc.

Methods to boost our SNR

- Drop the noise
- Boost the signal.
 - aperture of your scope and f ratio.
 - If you keep the aperture constant and vary the f-ratio (by varying the focal length), you're trading off signal and resolution
- Light throughput of the telescope
 - Obstruction
 - Coating of mirrors / lens quality
- Quantum Efficiency of your image sensor
 - Proportion of photons that are recorded out of the total number that hit the sensor

CCD Cameras

Monochrome vs color cameras. Color filters cut your signal down to under a third of what it would have been without the color filters. You've cut the signal and kept the noise the same.

- Quantum Efficiency
- Dark Noise
- Read Out Speed
- Per-pixel SNR is higher with larger pixels

CCD Cameras

Readout Speed vs Noise

at low light levels, the readout noise can dominate other sources of noise

Sub exposures

Increases signal-to-noise ratio

1 2 3 4 5 7 10 15 20 25 The number sequence image. 1 2 3 4 5 7 10 15 20 25

The ramp sequence image.

1 15 20 25

Single frame with noise. The noise profile was designed to simulate the condition where sensor read noise + photon noise gives a S/N = 1 for the number 10.

Sub exposures

Increases signal-to-noise ratio

100 image median combine on 16-bit data.

100 image Sigma-Clipped average combine on 16-bit data. Clipping was set to 2.45 standard deviations.

Sub exposures

- Increases dynamic range
 - Objects have a range of brightness (actual dynamic range) that exceeds the range of brightness that can be recorded by the CCD (recordable dynamic range)
 - Stacking increases the number of possible digitized values linearly with the number of images stacked.

Sub exposure duration

- Time of exposure
- Number of Exposures
- Sky Background Flux (Sky Limited)
- Object Flux
- Focal Ratio
- Resolution / Aperture
- Binning
- QE of your CCD

Sky Limited Exposures

"Sky limit is the zone where the sky noise overpowers the readout noise"

Ideal Exposure Calculator						
Select a CCD Camera	SBIG ST-8300 \$					
Enter Test Exposure Time in Minutes	5					
Enter Measured Background Value	3000					
Select Percent Contribution from Readout Noise	5% 🛊					
Calculate.						
Ideal Subframe Exposure Time: 3.93 minutes						

Best ISO for your DSLR

The ISO setting does not affect your cameras sensitivity to light!

The ISO setting determines the amplification factor that the camera applies to the signal that represents the amount of photons captured in a pixel.

When you increase ISO:

- 1. you increase read noise, the noise that inherent to the electronics of the camera
- 2. You decrease dynamic range

Best ISO for your DSLR

- Depends on your particular model
- Increasing the ISO increases SNR until upstream read noise surpasses downstream read noise

Image Registration

Onen	Image File	FW	Aspect (Backgro	Contrast	Altitude
openin	Master-L-register-lanczos-sinc64-stack MEDIAN.FIT	1.56"	7	249	75.35	+39º 44'
in the second se	Master-L-register-lanczos-sinc64-stack MEAN.FIT	1.56"	6	245	77.91	+390 44'
Remove	Master-L-register-lanczos-sinc64-stack SUM.FIT	1.56"	6	245	77.91	+390 44'
	Master-L-register-lanczos-sinc36-stack MEAN.FIT	1.56"	7	352	88.39	+390 44'
Reduce	Master-L-register-lanczos-sinc36-stack SUM.FIT	1.56"	7	352	88.38	+390 44'
Reducem	Master-L-register-lanczos-sinc36-stack MEDIAN.FIT	1.57"	7	370	92.14	+390 44'
In Arcsecs	Master-L-register-BICUBIC SPLINE-36-stack SUM.FIT	1.57"	6	215	74.08	+390 44'
	Master-L-register-BICUBIC SPLINE-36-stack MEAN.FIT	1.57"	6	215	74.08	+390 44'
Measure	Master-L-register-lanczos-sinc256-stack MEAN.FIT	1.57"	6	683	117.52	+390 44'
	Master-L-register-lanczos-sinc256-stack SUM.FIT	1.57"	6	683	117.52	+390 44'
a course whereas	Master-L-register-BICUBIC SPLINE-36-stack MEDIAN.EIT	1.58"	7	241	76.11	+390 44'
Limit Alert	Master-L-register-lanczos-sinc256-stack MEDIAN.FIT	1.58"	7	726	112.65	+390 44'
Selected.	Master-L-register-Cubic-convolution-stack SUM.FIT	1.59"	6	48	39.03	+390 44'
Scietted.	Master-L-register-Cubic-convolution-stack MFAN.FTT	1.59"	6	48	39.02	+390 44'
1/48	Master-L-register-Cubic-convolution-stack MEDIAN.FIT	1.60"	7	48	37,53	+390 44'
	Master-L-register-BICUBIC SPI INE-16-stack SUM.ETT	1.61"	6	48	38.97	+390 44'
	Master-L-register-BICUBIC SPI INE-16-stack MEAN FIT	1.61"	6	48	38.97	+390 44'
View	Master-L-register-BICUBIC SPI INE-16-stack MEDIAN FIT	1.62"	7	96	50.95	+390 44'
	Master-L-register-nearest neighbor-stack MEDIAN ETT	1.62"	8	131	28.95	+390 44'
	Master-L-register-Catmull-Rom-stack MEAN FIT	1.62"	6	48	38 73	+390 44'
Curvature	Master-L-register-Catmull-Rom-stack SUM FIT	1.62"	6	48	38.74	+300 44'
	Master-L-register-Catmull-Rom-stack MEDIAN.ETT	1.63"	7	48	37.82	+390 44'
3-D Plot	Master-I-register-nearest neighbor-stack MEAN ETT	1.66"	7	131	27.80	+300 44'
5 5 1 10	Master-L-register-nearest neighbor-stack SUM FIT	1.66"	7	131	27.80	+390 44'
1	Master-L-register-OLIADRATIC-stack SUM FIT	1.67"	6	50	27.60	+300 44'
Charts	Master-L-register-OLIADRATIC-stack MEAN.EIT	1.67"	6	50	22.43	+390 44'
	Master-L-register-OLIADRATIC-stack MEDIAN FIT	1.69"	7	52	42 57	+390 44'
duran late	Master-L-register-Cosine-stack MEAN.FIT	1.71"	6	51	22.28	+390 44'
xtrapolate	Master-L-register-Cosine-stack SUM.FIT	1.71"	6	51	22.28	+390 44'
	Master-L-register-Mitchel-stack SUM.FIT	1.71"	6	51	22.29	+390 44'
	Master-L-register-Mitchel-stack MEAN, FIT	1.71"	6	51	22.29	+390 44'
	Master-L-register-Cosine-stack MEDIAN.FIT	1.74"	7	50	21.70	+390 44'
	Master-L-register-Mitchel-stack MEDIAN.FIT	1.74"	7	50	21.87	+390 44'
	Master-L-register-BILINEAR-stack SUM.FIT	1.75"	6	115	27.16	+390 44'
	Master-L-register-BILINEAR-stack MEAN.FIT	1.75"	6	115	27.16	+390 44'
	Master-L-register-TENT-stack SUM.FIT	1.75"	6	51	22.57	+390 44'
	Master-L-register-TENT-stack MEAN.FIT	1.75"	6	51	22.57	+390 44'
	Master-L-register-BILINEAR-stack MEDIAN.FIT	1.78"	6	115	26.43	+390 44'
	Master-L-register-TENT-stack MEDIAN.FIT	1.78"	7	50	22.04	+390 44'
	Master-L-register-OUADRATIC-B-SPLINE-stack MEAN FIT	1.86"	5	40	23.35	+390 44'
	Master-L-register-OUADRATIC-B-SPLINE-stack SUM FIT	1.86"	5	40	23.35	+390 44'
	Master-L-register-Gauss-stack SUM FTT	1.86"	5	50	23.41	+390 44'
	Master-I -register-Gauss-stack MEAN.FIT	1.86"	5	50	23.42	+390 44'
	Master-I -register-Gauss-stack MEDIAN FIT	1.89"	5	48	20.26	+390 44'
	Master-I-register-OUADRATIC-R-SPI INE-stack MEDIAN ETT	1.89"	5	50	22 68	+390 44'
	Master-I -register-Blouhic-B-Spline-stack SLIM ETT	1.05"	5	172	33.40	+390 44'
	Master-I -register-Bloubic-B-Spline-stack MEAN ET	1.05"	5	172	33.49	+390 44'
	master e register steaste s spille stack menuerit	1.95	5	1/2	33.49	

CCDInspector 2.5.3 (Evaluation)

Combining Algorithms

Mean / Average

• Best SNR but worse at removing artifacts / non random noise (e.g hot / cold pixels)

Median

- Rejects the highest and lowest pixel values
- Removes extremely bright semi-random artifacts such as cosmic rays
- Bad for hot and cold pixels as they remain the same place in all images
- Better at artifact removal but it reduces SNR in terms of random noise.

Combining Algorithms

• Min/Max-Clip

- best non-random noise reduction
- less SNR loss than median combine.
- Rejects the highest or lowest value before taking a median value from the remaining pixel values.

This eliminates extreme pixel values from contributing to the median value.

• Sigma Clip

- Reduces extreme pixel values by using data from surrounding pixels.
- Best choice when combining a large number of subframes (> 20)

How to detect faintest details

Dark Skies

- Large Aperture and quality lens / mirror
- Fast f/ratio and large aperture are key because you gather the most light in the shortest time.
- Dark current suppression
- Good Quantum Efficiency
- ISO selection in DSLRs / Dynamic Range
- Well Depth Dynamic Range (Ability of a camera to record simultaneously very low light signals alongside bright signal)

Dithering

- A method of shifting the telescope slightly between exposures to offset each image slightly.
- This results in fixed pixel defects like hot and cold pixels being misaligned in the final composite image and thus removed by median or Sigma Clip combine methods.

Filters

• Comparing filter total transmissions in units of 65535

LumRedGreenBlueAstrodon5500117317431510 (2E series)Astronomik5524209920981979 (L2, DeepSky RGB)Baader5448259624961579

• Astrodon gives the lowest counts in RGB, especially R is very weak at almost half count.

Tests performed by Tommy Nawratil www.teleskop-austria.com

Binning for Color Data

When there is not enough time to capture everything in bin1x1

- Color data require 3x time to be equivalent to Lum
- Bin color data (RGB) to 2x2.
- Always set Luminance at 1x1 (full resolution)
- When combined with the L, the final LRGB will have the same level of detail as the Luminance image.
- Pay attention to color (RGB) sensitivity of your CCD and capture
 - Uneven sub frame time duration per color
 - More frames when you use a "less sensitive for your camera" color filter.
 - Try to reach background to max 2/3 of your sky limit ADUs

Drizzle

 Variable Pixel Linear Reconstruction Algorithm, better known as "Drizzle" was created for NASA to correct for undersampled images taken by the Hubble Space Telescope

Drizzle

Image sample from deepskywest

Drizzle integration

Undersampled Data taken with 135mm lens – 8 arcsecs

Capturing Data Guidelines

- Measure and calculate your sky limited exposures
- Aim for shorter exposures except you are in a very dark location (if something goes wrong less data lost)
- Short exposures VS long exposures in terms of SNR loss is very small
- Divide your sky limit / 2 and take as many number of exposures you can
- Use Sigma Clip combine algorithm to stack
- Always use random dithering in all direction
- Bin color filters in 2x2 when there is not enough time.
- Use Drizzle when you are undersampling

Calibration Frames

Darks / Flats / Bias

- Always take **Flats** to correct uneven illumination
- Advise not to take darks on low dark current sensor (Sony), Just do aggressive dithering / sigma clipping algorithm and it wipe out any hot/cold pixel
- Amp glow is reduced in Sony sensors when you cool them under -5°C
- Any issue with glow requires calibration of your light/flat frames with darks

Calibration Frames

Effect of how many frames

• Take **at least 30 calibration frames** and average stack to improve SNR. After 40 frames the difference is not visible.

• ADU count in flats

- Don't take flats less than 10k ADUs. You will increase noise
- Don't take flats more than 50k ADUs. You will create artifacts due to light saturation
- 25k-35k is the best option here
- Never seen a difference when I didn't use odd number of frames. (median calculation)
- Trial and Error for every CCD model. Check what suits in your case

Calibration Frames

Bias are very depended from temperature

BIAS of SONY ICX694 @15 °C

vs BIAS of SONY ICX694 @ -5 °C

× -	x +	Gray 1:3 m78_0sec_1x1_frame1 m78_0sec_1x1_frame1.fit	□ × - ≖ +	Gray 1:3 Target_1_0sec_1x1_frame34 Target 1_0sec_1x1_frame34.fit
ame			me3	
L L			E.	
sc_1x			TXL'	
8_0s4			Ose Contraction of the Contracti	
m7			at 1	
			Tan	
			<u> </u>	
다 ()				

Synthetic Luminance

A good option if you have weak Luminance data (not enough time) Combine **RGB + Ha data** and then **extract the luminance channel**

- Pixel math
- Average them in ImageIntegration tool of Pixinsight

Make sure you have taken care color gradients before the extraction

ImageIntegration : L + L_{synthetic}

Synthetic Luminance

Warning:

Actual Lum gives you higher SNR as it spans on all the visible spectrum.

RGB depends from your filters.

(Baader vs Astrodon have different results in SNR)

Synthetic Luminance

Multi Luminance Layering

... or how to enhance your RGB data (Introduced by Robert Gendler)

Our target: Acquire sufficient signal for good color data

- Low signal/noise ratio with reasonable exposure times
- Luminance tends to overwhelm and washout the RGB data
- Do not increase saturation
- Do not lowering the opacity of the luminance
- Both of them result in excessive noise and sacrifice of detail and an unsatisfying aesthetic result.

Multi Luminance Layering

Process

- 1. Create an LRGB composite image from your data
- 2. Reduce opacity to 50%
- 3. Add saturation and apply a small gaussian blur filter
- 4. Use this modified LRGB as your new enhanced RGB image
- 5. Do a final LRGB composite as you always do

Improvement of color S/N and resolution compared to the original RGB composite The final result is an LRGB image with richer color and full preservation of detail. Repeat process several times on demand and you can enrich more the color data.

Multi Luminance Layering

Before

After Multi LL + Star Reduction

Chrominance Noise Reduction

- Remove patterned color noise (ACDNR Color) or use Chromatic noise in LRGB Combination
 AutomaticBackgrout
- Remove any color gradient (Dynamic Background Extraction)
- Remove green noisy pixels (SCNR)

LRGBCombination	≖ ×
Transfer Functions	\$
Lightness: 0.450 Graduate Contraction: 0.500 Graduate Cont	
Chrominance Noise Reduction	¥

5	SCNR		×	×
Color to remove:	Green			-
Protection method:	Average Neutral			-
Amount:	0.68	-0		_
	Preserve lightness			
K B			D	ж

💹 Automatio	Backg	roundExtractor	×	×	
Sample Generation and Rejection					
Sample Generation					
Box size:	5			-	
Box separation:	5]-0		-	
Global Rejection ——				_	
Deviation:	0.800]		-	
Unbalance:	1.800] @		-	
Use Brightness Lim	its —	-			
Shadows:	0.0000]•			
Highlights:	1.0000]	-0		
Local Rejection					
Tolerance:	1.000			-	
Minimun valid fraction:	0.050]-0		-	
	Draw	sample boxes 🗌 Just try sam	ples		
Interpolation and Output			4	=	
Target Image Correction			1	t	
Correction:	Subtract	tion	•	-	
	Norm	nalize		_	
Discard background model					
	Repla	ce target image			
Identifier:	<auto></auto>				
Sample format:	Same as	target		•	
K .			B (×	

Chrominance Noise Reduction

Saturation

- Boost Saturation
- Use Lab Color in Photoshop, Select A or B channels and Increase Contrast in each one of them.

After that combine Color with Luminance Data

Reduce Noise

ALWAYS USE MASKS

Never apply noise reduction without a mask. You will loose details and most of the times the result will look like pastel / plastic

- Use a star mask to reduce stars and exclude them from N/R
- Use a large mask to apply N/R to your background
- Always use a lightness mask to protect your objects
- Do not exaggerate the N/R! Image looks like a fake one!
- If you have time take more shots to increase SNR.

Reduce Noise

• Most of the errors are done during N/R process

Again, pay attention and never apply a noise reduction filter without a **luminance** mask

- Noise Ninja
- Noiseware
- Topaz DeNoize
- Neat Image

Tends to create a plastic feeling and a strange washout pattern in the background of your final image

ACDNR

- Applies to pixel structure sizes via individual wavelet layers
- Good for Linear or not Linear images
- Smooth noise reduction
- Can be applied in Lum or Color data separately
- Always use a mask or else it can blur details in edges

ACDNR 🗷	×
ACDNR Filters	*
Luminance Chrominance	_
🗶 Apply 🗌 Luminance mask 🗦	
StdDev: 1.5	-
Amount: 0.90	-
Iterations: 3 🔶 Kernel size: 7	
Edge Protection	
Prefilter: None	
Robustness: 3x3 Weighted Average	
Structure size: 3	
X Dark Sides	
Threshold: 0.020	
Overdrive: 0.10	
₩ Bright Sides	
Threshold: 0.020	
Overdrive: 0.10	
Star protection	
Star threshold: 0.025	
Luminance Mask 3	Ŧ
🖌 🔳 🔶	ж

ACDNR

Original RGB

RGB Stack applying Luminance + Chrominance N/R with Lum Mask

Multiscale Median Transform

- Good for linear & non linear images
- Noise reduction can be done smoothly
- Smooth noise reduction
- Can be applied in Lum or Color data
- It leaves behind black noise pixels over background that need some smoothing

<u>.</u>	Μ	ultiscaleMedianTransform	× ×			
,	Algorithr	n: Multiscale median transform	-			
Layers			*			
Dvad		Linear:	4			
Univer	Scala	Darameters				
Layer	J		_			
× 1	2	S(t=4,0000, s=1.00, a=0.0000)				
× 2	4	S(t=3.0000, s=1.00, a=0.0000)				
✓ 4	8	S(t=2.0000, s=1.00, a=0.0000)				
🗸 R	16					
			_			
Det	ail Lay	er 4/4	*			
	Bias:	0.000				
🖌 Noi	se Red	uction	\$			
Thre	shold:	2.0000				
Ar	mount:	1.00	0			
Ad	aptive:	0.0000				
Line	ear Ma	sk	Ŧ			
Dynam	Dynamic Range Extension ¥					
Target:		Layer Preview:				
RGB/K	RGB/K components V No layer preview V					
	0		ъж			

Multiscale Median Transform

Original RGB

Multiscale Median Transform

Multiscale Linear Transform

- Applies to pixel structure sizes via individual wavelet layers
- Good for Linear or non Linear images
- Smooth noise reduction
- Can be applied in Lum or Color data
- Always use a mask or else it can blur details in edges

		MultiscaleLinearTransform	*	: ×
Algo	rithm	Multiscale linear transform		-
Layers				*
• Dyadic	01	inear: 0 🌲	Layers: 5	-
Scaling fun	ction	Linear Interpolation (3)		-
Layer Sc.	ale	Parameters		
¥ 1	1	S(5.000,1.00,1)		
✓ 2	2	S(3.500,0.90,1)		
✓ 3	4	S(2.500,0.80,1)		
V 4	8	S(1.500,0.80,1)		
V 5	16	S(0.500,0.70,1)		
V K	32			
				-
Detail L	ayer	1/5		*
Bia	as:	0.000		•
Noise R	educ	tion		*
Thresho	ld:	5.000		_
Amou	nt:	1.00		-0
Iteration	ns:	1		
Linear N	lask			*
	E	Preview mask		
Amplificatio	on:	200		_
Smoothnes	ss:	1.00		
	-	Inverted mask		
k-Sigma	Noi	se Thresholding		*
Thresho	ld:	3.00		
Amou	nt:	1.00		-0
	-	Soft thresholding		
	Ē	Use multiresolution support		
Deringir	ng] 000		¥
Large-Scale	Tra	sfer Function		-
Dynamic Ra	inge	Extension		*
International Advance	20156-02-01			
Target: RGB/K com	none	Layer Preview:	N	-
				-
				莱

Multiscale Linear Transform

Original RGB

No mask

Multiscale Linear Transform

Original RGB

Reverse Mask Applied

TGV Denoise

- Applies to pixel structure sizes via individual wavelet layers
- Good for Linear or not Linear images
- Smooth noise reduction
- Can be applied in Lum or Color data
- Always use a mask or else it can blur details in edges

8	.	TGVDenoise	×	×
	(● RGB/K mode ○ CIE L*a*b* mode		
	RGB/K Chromina	nce		
		Apply		
	Strength:	5.00000000 5.00 0	¢	
	Edge protection:	0.00025000 2.50 -4	-	
	Smoothness:	2.0000000 2.00 0	÷	
	Iterations:	1000 🗘		
	[Automatic convergence		
	Convergence:	0.00400000 4.00 -3	×	

TGV Denoise

Original RGB

Reverse Mask Applied

Multi Scale Processing

- Try to reveal faint large structures such as Integrated F lux Nebulae (IFN) which are very close to the noise floor
- Introduced by Rogelio Bernal Andreo
- Breaks the image into small, and large scale structures
- Lightly stretches the image with the large scale structures
- Creates a mask so the process only happens on the darkest areas of the image
- Adds everything back together

ATrousWaveletTransform	ж×
Wavelet Layers	*
Dyadic Linear: Linear:	5 🕶
Scaling Function: Linear Interpolation (3)	•
Layer Scale Parameters	
✓ 1 1	- Sc
✓ 2 2	
✓ 3 4	
✓ 4 8	
V 5 16	
∧ K 32	-
Residual Layer Bias: 0.000 Noise Reduction Threshold: 3.000 Amount: 1.00	2
Iterations: 1	
In the sigma Noise Thresholding	*
	*
Large-Scale Transfer Function	*
Dynamic Range Extension	*
Target: Layer Preview:	
RGB/K components No layer preview	•
	B ¥

Multi Scale Processing

Final LRGB

Large Scale Structures Processing

Thank you

Celestialpixels.com Evangelos Souglakos